Cohomology of Invariant Drinfeld Twists on Group Algebras

نویسندگان

  • PIERRE GUILLOT
  • CHRISTIAN KASSEL
چکیده

We show how to compute a certain group H l (G) of equivalence classes of invariant Drinfeld twists on the algebra of a finite group G over a field k of characteristic zero. This group is naturally isomorphic to the second lazy cohomology group H l (Ok(G)) of the Hopf algebra Ok(G) of k-valued functions on G. When k is algebraically closed, the answer involves the group of outer automorphisms of G induced by conjugation in the group algebra as well as the set of all pairs (A, b), where A is an abelian normal subgroup of G and b : b A × b A → k is a k-valued G-invariant non-degenerate alternating bilinear form on the dual b A. When the ground field k is not algebraically closed, we use algebraic group techniques to reduce the computation of H l (G) to a computation over the algebraic closure. As an application of our results, we compute H l (G) for a number of groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hochschild Cohomology and Quantum Drinfeld Hecke Algebras

Abstract. Quantum Drinfeld Hecke algebras are generalizations of Drinfeld Hecke algebras in which polynomial rings are replaced by quantum polynomial rings. We identify these algebras as deformations of skew group algebras, giving an explicit connection to Hochschild cohomology. We compute the relevant part of Hochschild cohomology for actions of many reflection groups and we exploit computatio...

متن کامل

Drinfeld Orbifold Algebras

We define Drinfeld orbifold algebras as filtered algebras deforming the skew group algebra (semi-direct product) arising from the action of a finite group on a polynomial ring. They simultaneously generalize Weyl algebras, graded (or Drinfeld) Hecke algebras, rational Cherednik algebras, symplectic reflection algebras, and universal enveloping algebras of Lie algebras with group actions. We giv...

متن کامل

Gauge Invariants from the Powers of Antipodes

We prove that the trace of the nth power of the antipode of a Hopf algebra with the Chevalley property is a gauge invariant, for each integer n. As a consequence, the order of the antipode, and its square, are invariant under Drinfeld twists. The invariance of the order of the antipode is closely related to a question of Shimizu on the pivotal covers of finite tensor categories, which we affirm...

متن کامل

A Method of Construction of Finite-dimensional Triangular Semisimple Hopf Algebras

The goal of this paper is to give a new method of constructing finite-dimensional semisimple triangular Hopf algebras, including minimal ones which are non-trivial (i.e. not group algebras). The paper shows that such Hopf algebras are quite abundant. It also discovers an unexpected connection of such Hopf algebras with bijective 1-cocycles on finite groups and set-theoretical solutions of the q...

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009